Otto Dataset Analysis
Published on
As a first project, I decided to pick a random dataset from Kaggle to analyse. In this project, I analysed project distributions from the Otto Group in an attempt to classify them using a 4-linear layer model. Below, I have shared the my confusion matrix, showing the class predictions vs actual results, and a basic code of my linear model.
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l1 = nn.Linear(93, 64)
self.l2 = nn.Linear(64, 32)
self.l3 = nn.Linear(32, 16)
self.l4 = nn.Linear(16, 10)
def forward(self, x):
x = x.view(-1, 92)
x = F.relu(self.l1(x))
x = F.relu(self.l2(x))
x = F.relu(self.l3(x))
return self.l4(x)
model = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
To read more, please visit my repository for this project
This work is licensed under a Creative Commons Attribuition-ShareAlike 4.0 International License .